Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Natl Sci Rev ; 10(6): nwad089, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2317893

ABSTRACT

Wastewater-based epidemiology (WBE) has exhibited great utility in the early and rapid identification of SARS-CoV-2. However, the efficacy of wastewater surveillance under China's previous strict epidemic prevention policy remains to be described. We collected the WBE data of wastewater treatment plants (WWTPs) in the Third People's Hospital of Shenzhen and several communities to determine the significant effectiveness of routine wastewater surveillance in monitoring the local spread of SARS-CoV-2 under tight containment of the epidemic. The results of 1 month of continuous wastewater surveillance showed that positive signals for SARS-CoV-2 RNA were detected in the wastewater samples, and a significant positive correlation was observed between the virus concentration and the number of daily cases. In addition, the community's domestic wastewater surveillance results were confirmed even 3 days before, or simultaneously with, the infected patient being confirmed as having the virus. Meanwhile, an automated sewage virus detection robot, ShenNong No.1 robot, was developed, showing a high degree of agreement with experimental data, offering the possibility of large-scale multi-point surveillance. Overall, our results illustrated the clear indicative role of wastewater surveillance in combating COVID-19 and provided a practical basis for rapidly expanding the feasibility and value of routine wastewater surveillance for future emerging infectious diseases.

2.
J Virol ; 97(4): e0021023, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2254654

ABSTRACT

Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.


Subject(s)
Alphacoronavirus , Caveolae , Clathrin , Pinocytosis , Virus Internalization , rab GTP-Binding Proteins , Alphacoronavirus/physiology , rab GTP-Binding Proteins/metabolism , Endosomes/metabolism , Coronavirus Infections/metabolism , Hydrogen-Ion Concentration , Dynamins/metabolism , Caveolae/metabolism , Cholesterol/metabolism , Clathrin/metabolism , Pinocytosis/physiology , Vero Cells , Chlorocebus aethiops , Animals
4.
Biomed Pharmacother ; 156: 113783, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2060453

ABSTRACT

Pentraxin-3 (PTX3) is the prototype of the long pentraxin subfamily, an acute-phase protein consisting of a C-terminal pentraxin domain and a unique N-terminal domain. PTX3 was initially isolated from human umbilical vein endothelial cells and human FS-4 fibroblasts. It was subsequently found to be also produced by synoviocytes, chondrocytes, osteoblasts, smooth muscle cells, myeloid dendritic cells, epithelial cells, and tumor cells. Various modulatory factors, such as miRNAs, cytokines, drugs, and hypoxic conditions, could regulate the expression level of PTX3. PTX3 is essential in regulating innate immunity, inflammation, angiogenesis, and tissue remodeling. Besides, PTX3 may play dual (pro-tumor and anti-tumor) roles in oncogenesis. PTX3 is involved in the occurrence and development of many non-cancerous diseases, including COVID-19, and might be a potential biomarker indicating the prognosis, activity,and severity of diseases. In this review, we summarize and discuss the potential roles of PTX3 in the oncogenesis and pathogenesis of non-cancerous diseases and potential targeted therapies based on PTX3.


Subject(s)
COVID-19 Drug Treatment , Endothelial Cells , Humans , Endothelial Cells/metabolism , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Inflammation/metabolism , Immunity, Innate , Carcinogenesis
5.
Antiviral Res ; 206: 105389, 2022 10.
Article in English | MEDLINE | ID: covidwho-1982554

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) helicase NSP13 plays a conserved role in the replication of coronaviruses and has been identified as an ideal target for the development of antiviral drugs against SARS-CoV-2. Here, we identify a novel NSP13 helicase inhibitor punicalagin (PUG) through high-throughput screening. Surface plasmon resonance (SPR)-based analysis and molecular docking calculation reveal that PUG directly binds NSP13 on the interface of domains 1A and 2A, with a KD value of 21.6 nM. Further biochemical and structural analyses suggest that PUG inhibits NSP13 on ATP hydrolysis and prevents it binding to DNA substrates. Finally, the antiviral studies show that PUG effectively suppresses the SARS-CoV-2 replication in A549-ACE2 and Vero cells, with EC50 values of 347 nM and 196 nM, respectively. Our work demonstrates the potential application of PUG in the treatment of coronavirus disease 2019 (COVID-19) and identifies an allosteric inhibition mechanism for future drug design targeting the viral helicases.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chlorocebus aethiops , DNA Helicases/metabolism , Humans , Hydrolyzable Tannins , Molecular Docking Simulation , RNA Helicases/chemistry , Vero Cells
6.
Frontiers in chemistry ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1958511

ABSTRACT

Desired drug candidates should have both a high potential binding chance and high specificity. Recently, many drug screening strategies have been developed to screen compounds with high possible binding chances or high binding affinity. However, there is still no good solution to detect whether those selected compounds possess high specificity. Here, we developed a reverse DFCNN (Dense Fully Connected Neural Network) and a reverse docking protocol to check a given compound’s ability to bind diversified targets and estimate its specificity with homemade formulas. We used the RNA-dependent RNA polymerase (RdRp) target as a proof-of-concept example to identify drug candidates with high selectivity and high specificity. We first used a previously developed hybrid screening method to find drug candidates from an 8888-size compound database. The hybrid screening method takes advantage of the deep learning-based method, traditional molecular docking, molecular dynamics simulation, and binding free energy calculated by metadynamics, which should be powerful in selecting high binding affinity candidates. Also, we integrated the reverse DFCNN and reversed docking against a diversified 102 proteins to the pipeline for assessing the specificity of those selected candidates, and finally got compounds that have both predicted selectivity and specificity. Among the eight selected candidates, Platycodin D and Tubeimoside III were confirmed to effectively inhibit SARS-CoV-2 replication in vitro with EC50 values of 619.5 and 265.5 nM, respectively. Our study discovered that Tubeimoside III could inhibit SARS-CoV-2 replication potently for the first time. Furthermore, the underlying mechanisms of Platycodin D and Tubeimoside III inhibiting SARS-CoV-2 are highly possible by blocking the RdRp cavity according to our screening procedure. In addition, the careful analysis predicted common critical residues involved in the binding with active inhibitors Platycodin D and Tubeimoside III, Azithromycin, and Pralatrexate, which hopefully promote the development of non-covalent binding inhibitors against RdRp.

7.
Ther Adv Respir Dis ; 16: 17534666221113663, 2022.
Article in English | MEDLINE | ID: covidwho-1950910

ABSTRACT

BACKGROUND: High-flow nasal cannula (HFNC) and noninvasive ventilation (NIV) are important treatment approaches for acute hypoxemic respiratory failure (AHRF) in coronavirus disease 2019 (COVID-19) patients. However, the differential impact of HFNC versus NIV on clinical outcomes of COVID-19 is uncertain. OBJECTIVES: We assessed the effects of HFNC versus NIV (interface or mode) on clinical outcomes of COVID-19. METHODS: We searched PubMed, EMBASE, Web of Science, Scopus, MedRxiv, and BioRxiv for randomized controlled trials (RCTs) and observational studies (with a control group) of HFNC and NIV in patients with COVID-19-related AHRF published in English before February 2022. The primary outcome of interest was the mortality rate, and the secondary outcomes were intubation rate, PaO2/FiO2, intensive care unit (ICU) length of stay (LOS), hospital LOS, and days free from invasive mechanical ventilation [ventilator-free day (VFD)]. RESULTS: In all, 23 studies fulfilled the selection criteria, and 5354 patients were included. The mortality rate was higher in the NIV group than the HFNC group [odds ratio (OR) = 0.66, 95% confidence interval (CI): 0.51-0.84, p = 0.0008, I2 = 60%]; however, in this subgroup, no significant difference in mortality was observed in the NIV-helmet group (OR = 1.21, 95% CI: 0.63-2.32, p = 0.57, I2 = 0%) or NIV-continuous positive airway pressure (CPAP) group (OR = 0.77, 95% CI: 0.51-1.17, p = 0.23, I2 = 65%) relative to the HFNC group. There were no differences in intubation rate, PaO2/FiO2, ICU LOS, hospital LOS, or days free from invasive mechanical ventilation (VFD) between the HFNC and NIV groups. CONCLUSION: Although mortality was lower with HFNC than NIV, there was no difference in mortality between HFNC and NIV on a subgroup of helmet or CPAP group. Future large sample RCTs are necessary to prove our findings. REGISTRATION: This systematic review and meta-analysis protocol was prospectively registered with PROSPERO (no. CRD42022321997).


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , COVID-19/therapy , Cannula , Humans , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Oxygen Inhalation Therapy/adverse effects , Respiration, Artificial , Respiratory Insufficiency/therapy
8.
Resour Policy ; 78: 102874, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1907728

ABSTRACT

We aim to investigate the static and dynamic time-frequency connectedness between energy and nonenergy commodity markets in China during COVID-19 based on Baruník and Krehlík (2018) method. First, in this paper, we find that the short-term connectedness dominates the long-term one, and the total connectedness increases after the COVID-19 outbreak. Second, the energy commodity is the receiver and is influenced much by the spillovers of non-energy commodity markets (e.g. chemical commodities and non-ferrous metals) in the short run. At the same time, the impact is less at the long-term investment horizons. In addition, chemical commodities and soft commodities are the primary transmitters in this system in the short run. In contrast, chemical commodities and coal steel iron commodities are the main long-run primary transmitters. Third, the spillover role varies with the time-frequency domain during COVID-19. To be more specific, the energy commodity shows a net receiver role in the short and long run before the COVID-19 pandemic, but after it, the role of the net transmitter can be seen in the long run with ease. Finally, we show that COVID can reduce the hedging effectiveness at different investment horizons. The mineral policymakers should note our dynamic empirical results between energy and nonenergy commodity.

9.
Virol Sin ; 37(4): 581-590, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1867891

ABSTRACT

SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination. However, there are concerns over the duration of vaccine-induced protection, as well as their effectiveness against emerging variants of concern. Here, we constructed a recombinant chimpanzee adenovirus vectored vaccine expressing the full-length spike of SARS-CoV-2 (AdC68-S). Rapid and high levels of humoral and cellular immune responses were observed after immunization of C57BL/6J mice with one or two doses of AdC68-S. Notably, neutralizing antibodies were observed up to at least six months after vaccination, without substantial decline. Single or double doses AdC68-S immunization resulted in lower viral loads in lungs of mice against SARS-CoV-2 challenge both in the short term (21 days) and long-term (6 months). Histopathological examination of AdC68-S immunized mice lungs showed mild histological abnormalities after SARS-CoV-2 infection. Taken together, this study demonstrates the efficacy and durability of the AdC68-S vaccine and constitutes a promising candidate for clinical evaluation.


Subject(s)
COVID-19 , Viral Vaccines , Adenoviridae/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Mice , Mice, Inbred C57BL , Pan troglodytes , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic
10.
BMJ Case Rep ; 15(5)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1865145

ABSTRACT

A healthy, immunocompetent South Asian man in his mid-20s, with a medical history of gastric ulcer, presented to Accident & Emergency with pleuritic chest pain, shortness of breath, fever, night sweats, weight loss, dry cough and asymptomatic iron deficiency anaemia. Following his initial assessment and investigations (chest X-ray, CT and blood tests), a diagnosis of miliary tuberculosis (TB) was made and empirical antimicrobial treatment started. However, subsequent microbiological testing, including urine, blood, induced sputum and lymph node sampling, was negative. Being interpreted as non-diagnostic, the antimicrobial therapy was continued. Following a clinical deterioration while on treatment, the patient's case was re-evaluated and further investigations, including a repeat CT and a liver biopsy, confirmed a diagnosis of stage IV (T1aN3bM1) gastric carcinoma. Our case highlights the diagnostic challenges in differentiating metastatic cancer from miliary TB. We also focus on possible cognitive biases that may have influenced the initial management decisions.


Subject(s)
Neoplasms , Tuberculosis, Miliary , Cough , Fever , Humans , Male , Sputum , Tuberculosis, Miliary/diagnosis , Tuberculosis, Miliary/drug therapy , Young Adult
11.
Nat Microbiol ; 7(3): 423-433, 2022 03.
Article in English | MEDLINE | ID: covidwho-1671570

ABSTRACT

Elucidating the dynamics of the neutralizing antibody (nAb) response in coronavirus disease 2019 (COVID-19) convalescents is crucial in controlling the pandemic and informing vaccination strategies. Here we measured nAb titres across 411 sequential plasma samples collected during 1-480 d after illness onset or laboratory confirmation (d.a.o.) from 214 COVID-19 convalescents, covering the clinical spectrum of disease and without additional exposure history after recovery or vaccination against SARS-CoV-2, using authentic SARS-CoV-2 microneutralization (MN) assays. Forty-eight samples were also tested for neutralizing activities against the circulating variants using pseudotyped neutralization assay. Results showed that anti-RBD IgG and MN titres peaked at ~120 d.a.o. and subsequently declined, with significantly reduced nAb responses found in 91.67% of COVID-19 convalescents (≥50% decrease in current MN titres compared with the paired peak MN titres). Despite this decline, majority of the COVID-19 convalescents maintained detectable anti-RBD IgG and MN titres at 400-480 d.a.o., with undetectable neutralizing activity found in 14.41% (16/111) of the mild and 50% (5/10) of the asymptomatic infections at 330-480 d.a.o. Persistent antibody-dependent immunity could provide protection against circulating variants after one year, despite significantly decreased neutralizing activities against Beta, Delta and Mu variants. In conclusion, these data show that despite a marked decline in neutralizing activity over time, nAb responses persist for up to 480 d in most convalescents of symptomatic COVID-19, whereas a high rate of undetectable nAb responses was found in convalescents from asymptomatic infections.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Asymptomatic Infections/epidemiology , COVID-19/blood , COVID-19/epidemiology , COVID-19/virology , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Young Adult
13.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1667057

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , RNA/immunology , Transcriptome/immunology , A549 Cells , Animals , COVID-19/genetics , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/virology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Pandemics/prevention & control , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Seq/methods , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
14.
Cell Discov ; 7(1): 82, 2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1397862

ABSTRACT

The pandemic of COVID-19 caused by SARS-CoV-2 has raised a new challenges to the scientific and industrious fields after over 1-year spread across different countries. The ultimate approach to end the pandemic is the timely application of vaccines to achieve herd immunity. Here, a novel SARS-CoV-2 receptor-binding domain (RBD) homodimer was developed as a SARS-CoV-2 vaccine candidate. Formulated with aluminum adjuvant, RBD dimer elicited strong immune response in both rodents and non-human primates, and protected mice from SARS-CoV-2 challenge with significantly reducing viral load and alleviating pathological injury in the lung. In the non-human primates, the vaccine could prevent majority of the animals from SARS-CoV-2 infection in the respiratory tract and reduce lung damage. In addition, antibodies elicited by this vaccine candidate showed cross-neutralization activities to SARS-CoV-2 variants. Furthermore, with our expression system, we provided a high-yield RBD homodimer vaccine without additional biosafety or special transport device supports. Thus, it may serve as a safe, effective, and low-cost SARS-CoV-2 vaccine candidate.

15.
MAbs ; 13(1): 1930636, 2021.
Article in English | MEDLINE | ID: covidwho-1258715

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease-2019 (COVID-19), interacts with the host cell receptor angiotensin-converting enzyme 2 (hACE2) via its spike 1 protein during infection. After the virus sequence was published, we identified two potent antibodies against the SARS-CoV-2 receptor binding domain (RBD) from antibody libraries using a phage-to-yeast (PtY) display platform in only 10 days. Our lead antibody JMB2002, now in a Phase 1 clinical trial (ChiCTR2100042150), showed broad-spectrum in vitro blocking activity against hACE2 binding to the RBD of multiple SARS-CoV-2 variants, including B.1.351 that was reportedly much more resistant to neutralization by convalescent plasma, vaccine sera and some clinical-stage neutralizing antibodies. Furthermore, JMB2002 has demonstrated complete prophylactic and potent therapeutic efficacy in a rhesus macaque disease model. Prophylactic and therapeutic countermeasure intervention of SARS-CoV-2 using JMB2002 would likely slow down the transmission of currently emerged SARS-CoV-2 variants and result in more efficient control of the COVID-19 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/prevention & control , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibody Specificity , Binding Sites, Antibody , CHO Cells , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Disease Models, Animal , Epitopes , Macaca mulatta , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Vero Cells
16.
Nat Commun ; 12(1): 2623, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1225506

ABSTRACT

COVID-19 pandemic caused by SARS-CoV-2 constitutes a global public health crisis with enormous economic consequences. Monoclonal antibodies against SARS-CoV-2 can provide an important treatment option to fight COVID-19, especially for the most vulnerable populations. In this work, potent antibodies binding to SARS-CoV-2 Spike protein were identified from COVID-19 convalescent patients. Among them, P4A1 interacts directly with and covers majority of the Receptor Binding Motif of the Spike Receptor-Binding Domain, shown by high-resolution complex structure analysis. We further demonstrate the binding and neutralizing activities of P4A1 against wild type and mutant Spike proteins or pseudoviruses. P4A1 was subsequently engineered to reduce the potential risk for Antibody-Dependent Enhancement of infection and to extend its half-life. The engineered antibody exhibits an optimized pharmacokinetic and safety profile, and it results in complete viral clearance in a rhesus monkey model of COVID-19 following a single injection. These data suggest its potential against SARS-CoV-2 related diseases.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antibody Specificity/immunology , COVID-19/epidemiology , Cell Line, Tumor , Cells, Cultured , Chlorocebus aethiops , Female , Humans , Macaca mulatta , Male , Mutation , Pandemics , Protein Binding , Protein Domains , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Treatment Outcome , Vero Cells , COVID-19 Drug Treatment
17.
Virol Sin ; 36(5): 879-889, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1174014

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused more than 96 million infections and over 2 million deaths worldwide so far. However, there is no approved vaccine available for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the disease causative agent. Vaccine is the most effective approach to eradicate a pathogen. The tests of safety and efficacy in animals are pivotal for developing a vaccine and before the vaccine is applied to human populations. Here we evaluated the safety, immunogenicity, and efficacy of an inactivated vaccine based on the whole viral particles in human ACE2 transgenic mouse and in non-human primates. Our data showed that the inactivated vaccine successfully induced SARS-CoV-2-specific neutralizing antibodies in mice and non-human primates, and subsequently provided partial (in low dose) or full (in high dose) protection of challenge in the tested animals. In addition, passive serum transferred from vaccine-immunized mice could also provide full protection from SARS-CoV-2 infection in mice. These results warranted positive outcomes in future clinical trials in humans.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/prevention & control , Mice , Mice, Transgenic , Primates , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated/immunology
18.
J Clin Neurosci ; 88: 39-46, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1157516

ABSTRACT

Coronavirus disease 2019 (COVID-19) is currently a global concern, and the psychological impact cannot be overlooked. Our purpose was to evaluate the anxiety and depression in spinocerebellar ataxia (SCA) patients during the pandemic and to analyse the influencing factors. We conducted an online questionnaire survey among 307 SCA patients from China and selected 319 healthy people matched by sex and age as the control group. The questionnaire included general information, the self-rating anxiety scale (SAS), and the self-rating depression scale (SDS). The relevant factors included COVID-19 risk factors, age, sex, body mass index (BMI), educational background, disease course, score on the scale for the assessment and rating of ataxia (SARA), Mini-mental State Examination (MMSE) and International Cooperative Ataxia Rating Scale (ICARS). The proportion of SCA patients with anxiety was 34.9%, and the proportion with depression was 56.7%. The SAS and SDS scores of the SCA patients were significantly higher than those of the control group (SAS: 45.8 ± 10.1 vs. 40.6 ± 8.9, P < 0.01; SDS: 55.1 ± 12.2 vs. 43.6 ± 11.9, P < 0.01). In SCA3, the risk of exposure to COVID-19, educational level, disease course and the severity of ataxia may be factors affecting patients' mental health. More attention should be paid to the mental health of SCA patients during the COVID-19 pandemic.


Subject(s)
Anxiety/epidemiology , Anxiety/etiology , COVID-19 , Depression/epidemiology , Depression/etiology , Pandemics , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/epidemiology , Adult , Age Factors , Aged , Body Mass Index , China/epidemiology , Cross-Sectional Studies , Educational Status , Female , Humans , Male , Mental Health , Mental Status and Dementia Tests , Middle Aged , Risk Factors , Self Report , Sex Factors , Surveys and Questionnaires , Young Adult
19.
Nat Commun ; 11(1): 5752, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-926678

ABSTRACT

Efficacious interventions are urgently needed for the treatment of COVID-19. Here, we report a monoclonal antibody (mAb), MW05, with SARS-CoV-2 neutralizing activity by disrupting the interaction of receptor binding domain (RBD) with angiotensin-converting enzyme 2 (ACE2) receptor. Crosslinking of Fc with FcγRIIB mediates antibody-dependent enhancement (ADE) activity by MW05. This activity is eliminated by introducing the LALA mutation to the Fc region (MW05/LALA). Potent prophylactic and therapeutic effects against SARS-CoV-2 are observed in rhesus monkeys. A single dose of MW05/LALA blocks infection of SARS-CoV-2 in prophylactic treatment and clears SARS-CoV-2 in three days in a therapeutic treatment setting. These results pave the way for the development of MW05/LALA as an antiviral strategy for COVID-19.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/immunology , COVID-19 , Cell Line , Chlorocebus aethiops , Coronavirus Infections/prevention & control , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/prevention & control , Receptors, IgG/genetics , Receptors, IgG/immunology , Receptors, Virus/metabolism , SARS-CoV-2 , Vero Cells , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL